jueves, 5 de enero de 2012

Conclucion De Fisica Nuclear


Física Nuclear
 Bueno la conclusión es que Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto que tales partículas fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos
En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles.
Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones.
El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas , se dedujo la distribución de la carga eléctrica al interior de los átomos

Videos Sobre Fisica Nuclear

Estrategia Metodologica De Fisica Nuclear

Resumen De Fisica Nuclear


Física nuclear

La física nuclear es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos. La física nuclear es conocida mayoritariamente por la sociedad por el aprovechamiento de la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión como de fusión nuclear. En un contexto más amplio, se define la física nuclear y de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones entre las partículas subatómicas
La radiactividad fue descubierta en las sales de uranio por el físico francés Henri Becquerel en 1896.
En 1898, los científicos Marie y Pierre Curie descubrieron dos elementos radiactivos existentes en la naturaleza, el polonio (84Po) y el radio (88Ra).
En 1913 Niels Bohr publica su modelo de átomo, consistente en un núcleo central compuesto por partículas que concentran la práctica mayoría de la masa del átomo (neutrones y protones), rodeado por varias capas de partículas cargadas casi sin masa (electrones). Mientras que el tamaño del átomo resulta ser del orden del angstrom (10-10 m), el núcleo puede medirse en fermis (10-15 m), o sea, el núcleo es 100.000 veces menor que el átomo.
Ernest Rutherford en el año 1918 definió la existencia de los núcleos de hidrógeno. Rutherford sugirió que el núcleo de hidrógeno, cuyo número atómico se sabía que era 1, debía ser una partícula fundamental. Se adoptó para esta nueva partícula el nombre de protón sugerido en 1886 por Goldstein para definir ciertas partículas que aparecían en los tubos catódicos.

Fisica Nuclear

Conclucion De la Paractica De Laboratorio Electromagnetismo


En esta práctica de laboratorio podemos concluir que al elaborar un aparato electromagnético, como lo es el electro imán podemos ver que es necesario utilizar ambos elementos conjugándolos, a modo de que se ayuden mutuamente tal y como podemos en muchos de los aparatos de nuestra casa en los cuales se lleva a cabo un trabajo muy intenso multiplicando varias veces la fuerza con la que lo haría un humano, pero de lo que me di cuenta es que enrollamos sobre un clavo bastante grueso mucho cobre que seguramente sirve como conductor, por los cual podemos inferir en que cuantas más vueltas del cobre más potencia dará al electro imán, de ahí que al conectarlo a ambos costados de la pila se transfiere la corriente eléctrica produciendo así un campo magnético y eléctrico con lo cual podemos que atrae pequeños objetos metálicos como clips y limadura de hierro y también se observa como el magnetismo crea una separación por que en los aparatos hace que no choquen sus partes por dentro..

Practica De Laboratorio Electromagnetismo



esta es la maquina que desarmamos para observar como funciona el electromagnetismo 

Estrategia Metodologica

Reporte Eletromagnetismo


Electromagnetismo
El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.
El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales o tensoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la mecánica cuántica.
El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido

Electromagnetismo

ELECTROMAGNETISMO